skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Phillips, Richard P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Longstanding theories and models classify mineral-associated organic matter as the large ( ~ 60%) but slow-cycling and persistent portion of soil organic matter. Strong physico-chemical interactions and diffusion limitations restrict the turnover of mineral-associated organic matter, allowing carbon and nitrogen bound therein to persist in soil for as long as centuries to millennia. However, mineral-associated organic matter is a chemically and functionally diverse pool with a substantial portion cycling at relatively fast (i.e., minutes to years) timescales. Despite a growing body of evidence for the heterogenous and multi-pool nature of mineral-associated organic matter, we lack consensus on how to conceptualize and directly quantify fast-cycling mineral-associated organic matter and its ecological significance. We demonstrate that the dynamic qualities of fast-cycling mineral-associated organic matter vary based on 1) the chemistry of the mineral particles and organic matter, 2) the complex set of interactions between organic matter and the mineral matrix, and 3) the presence and strength of destabilizing forces that lead to decomposition or loss of mineral-associated organic matter (i.e., plant-microbe interactions, agricultural intensification, and climate change). Finally, we discuss potential implications and research opportunities for how we measure, manage, and model the dynamic subfraction of this otherwise persistent pool of soil organic matter. 
    more » « less
  2. Plant–soil feedback (PSF) plays a central role in determining plant community dynamics, yet our understanding of how different combinations of plants and microbes influence PSF remains limited. Plants of different mycorrhizal types often exhibit contrasting PSF outcomes, influencing plant recruitment and spatial structure. Generalizing across plant species based on mycorrhizal type creates the potential to examine broader effects on ecological communities. We review mechanisms contributing to different PSF outcomes between arbuscular mycorrhizal and ectomycorrhizal trees. We focus on how plant and fungal traits that differ between mycorrhizal types interact with pathogenic and saprotrophic microorganisms and nutrient and carbon cycling. Synthesis. Building on this framework, we propose several new research directions. First, mycorrhizal‐induced changes in soils can operate beyond the conspecific level, spilling over from abundant plant species onto less abundant ones. This community‐level ‘mycorrhizal spillover’ is hypothesized to affect PSF in ways that are additive and interactive with conspecific density dependence. Second, we describe how mycorrhizal effects on PSF could structure the way plant communities respond to global change. Third, we discuss how they may influence plant evolution by altering the balance of selection pressures on traits and genes related to pathogen defence and mutualism formation. 
    more » « less
  3. Wang, Han (Ed.)
    Abstract Exploring why species of different plant growth forms can coexist in the same forest is critical for understanding the long-term community stability, but is poorly studied from root ecological strategies. The aim of this study was to explore the variation of root functional traits among different growth forms and their distribution patterns in root economics space to clarify how plant growth forms affect the root resource acquisition strategies of co-occurring species in a forest community. We sampled 115 co-occurring species with five growth forms (i.e., trees, shrubs, lianas, herbs and ferns) from a mega-plot (>50 ha) in temperate forest and measured seven root functional traits, including root morphological, anatomical and chemical traits, that are closely associated with root resource foraging and conservation strategies. We found that root specific length (SRL) and tissue density (RTD) showed wider variations than other traits among the five growth forms. Moreover, compared with clade and mycorrhizal type, variations of SRL and RTD were largely attributed to growth forms. Importantly, 115 co-occurring species were separately aggregated by growth forms along the trade-off dimension of SRL and RTD in root economics space, suggesting the diversity in root resource acquisition strategies at a local forest community is linked to plant growth forms. In particular, herbs were concentrated towards the side of high SRL and RN, by contrast, trees, shrubs and ferns were positioned at the side of high RTD and carbon/nitrogen, and lianas were located towards the middle. Diverse root resource acquisition strategies in plant growth forms allow them to occupy specific belowground ecological niches, thereby relieving the competition for the common resource. These findings advance our understanding of the mechanism for maintaining community species coexistence from a below-ground perspective. 
    more » « less
  4. Abstract Forest canopy complexity (i.e., the three‐dimensional structure of the canopy) is often associated with increased species diversity as well as high primary productivity across natural forests. However, canopy complexity, tree diversity, and productivity are often confounded in natural forests, and the mechanisms of these relationships remain unclear. Here, we used two large tree diversity experiments in North America to assess three hypotheses: (1) increasing tree diversity leads to increased canopy complexity, (2) canopy complexity is positively related to tree productivity, and (3) the relationship between tree diversity and tree productivity is indirect and driven by the positive effects of canopy complexity. We found that increasing tree diversity from monocultures to mixtures of 12 species increases canopy complexity and productivity by up to 71% and 73%, respectively. Moreover, structural equation modeling indicates that the effects of tree diversity on productivity are indirect and mediated primarily by changes in internal canopy complexity. Ultimately, we suggest that increasing canopy complexity can be a major mechanism by which tree diversity enhances productivity in young forests. 
    more » « less
  5. ABSTRACT Forest composition is changing, yet the consequences for terrestrial carbon cycling are unclear. In the eastern United States, water‐demanding “mesophytic” tree species are replacing “xerophytic” oaks (Quercusspp.) and hickories (Caryaspp.), raising concerns that forest productivity will become increasingly sensitive to more frequent and severe drought conditions predicted for the region. However, we have a limited understanding of the extent to which the mortality risk of xerophytes versus mesophytes is coordinated with their growth sensitivity during drought. Here, we evaluated growth and mortality dynamics for 20 abundant eastern United States tree species following a severe drought in the summer of 2012. We synthesized data from ~4500 forest inventory plots and used an approach that quantified relative drought responses between co‐located trees to minimize impacts from environmental heterogeneity. We found that mesophytes were just as likely to perish as co‐occurring xerophytes but were more sensitive to drought in terms of diminished growth. These findings suggest that xerophytic decline is likely to lead to reduced carbon uptake during drought and that management efforts to conserve oak‐hickory stands will be decisive to sustain the carbon mitigation potential of these forests. However, we also found that growth‐mortality relationships differed between functional groups. Among xerophytes, growth and survival during drought were decoupled. Among mesophytes, there was a high degree of coordination, where species that experienced greater mortality also experienced greater growth reductions. Therefore, mesophytes with high growth sensitivity to water deficits are likely to be the most vulnerable to drought‐driven die‐off events moving forward. 
    more » « less
  6. Abstract Decades of theory and empirical studies have demonstrated links between biodiversity and ecosystem functioning, yet the putative processes that underlie these patterns remain elusive. This is especially true for forest ecosystems, where the functional traits of plant species are challenging to quantify. We analyzed 74,563 forest inventory plots that span 35 ecoregions in the contiguous USA and found that in ~77% of the ecoregions mixed mycorrhizal plots were more productive than plots where either arbuscular or ectomycorrhizal fungal-associated tree species were dominant. Moreover, the positive effects of mixing mycorrhizal strategies on forest productivity were more pronounced at low than high tree species richness. We conclude that at low richness different mycorrhizal strategies may allow tree species to partition nutrient uptake and thus can increase community productivity, whereas at high richness other dimensions of functional diversity can enhance resource partitioning and community productivity. Our findings highlight the importance of mixed mycorrhizal strategies, in addition to that of taxonomic diversity in general, for maintaining ecosystem functioning in forests. 
    more » « less
  7. Forests around the world are experiencing changes due to climate variability and human land use. How these changes interact and influence the vulnerability of forests are not well understood. In the eastern United States, well‐documented anthropogenic disturbances and land‐use decisions, such as logging and fire suppression, have influenced forest species assemblages, leading to a demographic shift from forests dominated by xeric species to those dominated by mesic species. Contemporarily, the climate has changed and is expected to continue to warm and produce higher evaporative demand, imposing stronger drought stress on forest communities. Here, we use an extensive network of tree‐ring records from common hardwood species across ~100 sites and ~1300 trees in the eastern United States to examine the magnitude of growth response to both wet and dry climate extremes. We find that growth reductions during drought exceed the positive growth response to pluvials. Mesic species such asLiriodendron tulipiferaandAcer saccharum, which are becoming more dominant, are more sensitive to drought than more xeric species, such as oaks (Quercus) and hickory (Carya), especially at moderate and extreme drought intensities. Although more extreme droughts produce a larger annual growth reduction, mild droughts resulted in the largest cumulative growth decreases due to their higher frequency. When using global climate model projections, all scenarios show drought frequency increasing substantially (3–9 times more likely) by 2100. Thus, the ongoing demographic shift toward more mesic species in the eastern United States combined with drier conditions results in larger drought‐induced growth declines, suggesting that drought will have an even larger impact on aboveground carbon uptake in the future in the eastern United States. 
    more » « less
  8. Abstract Identifying the primary controls of particulate (POM) and mineral‐associated organic matter (MAOM) content in soils is critical for determining future stocks of soil carbon (C) and nitrogen (N) across the globe. However, drivers of these soil organic matter fractions are likely to vary among ecosystems in response to climate, soil type and the composition of local biological communities. We tested how soil factors, climate and plant–fungal associations influenced the distribution and concentrations of C and N in MAOM and POM in seven temperate forests in the National Ecological Observatory Network (NEON) across the eastern United States. Samples of upper mineral horizon soil within each forest were collected in plots representing a gradient of dominant tree–mycorrhizal association, allowing us to test how plant and microbial communities influenced POM and MAOM across sites differing in climate and soil conditions. We found that concentrations of C and N in soil organic matter were primarily driven by soil mineralogy, but the relative abundance of MAOM versus POM C was strongly linked to plot‐level mycorrhizal dominance. Furthermore, the effect of dominant tree mycorrhizal type on the distribution of N among POM and MAOM fractions was sensitive to local climate: in cooler sites, an increasing proportion of ectomycorrhizal‐associated trees was associated with lower proportions of N in MAOM, but in warmer sites, we found the reverse. As an indicator of soil carbon age, we measured radiocarbon in the MAOM fraction but found that within and across sites, Δ 14 C was unrelated to mycorrhizal dominance, climate, or soil factors, suggesting that additional site‐specific factors may be primary determinants of long‐term SOM persistence. Synthesis . Our results indicate that while soil mineralogy primarily controls SOM C and N concentrations, the distribution of SOM among density fractions depends on the composition of vegetation and microbial communities, with these effects varying across sites with distinct climates. We also suggest that within biomes, the age of mineral‐associated soil carbon is not clearly linked to the factors that control concentrations of MAOM C and N. 
    more » « less